The Entropy of Lagrange–Finsler Spaces and Ricci Flows

نویسنده

  • Sergiu I. Vacaru
چکیده

We formulate a statistical analogy of regular Lagrange mechanics and Finsler geometry derived from Grisha Perelman’s functionals and generalized for nonholonomic Ricci flows. Explicit constructions are elaborated when nonholonomically constrained flows of Riemann metrics result in Finsler like configurations, and inversely, when geometric mechanics is modelled on Riemann spaces with a preferred nonholonomic frame structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonholonomic Ricci Flows: I. Riemann Metrics and Lagrange–Finsler Geometry

In this paper, it is elaborated the theory the Ricci flows for manifolds enabled with nonintegrable (nonholonomic) distributions defining nonlinear connection structures. Such manifolds provide a unified geometric arena for nonholonomic Riemannian spaces, Lagrange mechanics, Finsler geometry, and various models of gravity (the Einstein theory and string, or gauge, generalizations). We follow th...

متن کامل

Nonholonomic Ricci Flows: II. Evolution Equations and Dynamics

This is the second paper in a series of works devoted to nonholonomic Ricci flows. By imposing non–integrable (nonholonomic) constraints on the Ricci flows of Riemannian metrics we can model mutual transforms of generalized Finsler–Lagrange and Riemann geometries. We verify some assertions made in the first partner paper and develop a formal scheme in which the geometric constructions with Ricc...

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

Nonholonomic Ricci Flows: III. Curve Flows and Solitonic Hierarchies

The geometric constructions are performed on (semi) Riemannian manifolds and vector bundles provided with nonintegrable distributions defining nonlinear connection structures induced canonically by metric tensors. Such spaces are called nonholonomic manifolds and described by two equivalent linear connections also induced unique forms by a metric tensor (the Levi Civita and the canonical distin...

متن کامل

Nonholonomic Ricci Flows and Parametric Deformations of the Solitonic pp–Waves and Schwarzschild Solutions

We study Ricci flows of some classes of physically valuable solutions in Einstein and string gravity. The anholonomic frame method is applied for generic off–diagonal metric ansatz when the field/ evolution equations are transformed into exactly integrable systems of partial differential equations. The integral varieties of such solutions, in four and five dimensional gravity, depend on arbitra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007